首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7723篇
  免费   1353篇
  国内免费   937篇
化学   5536篇
晶体学   114篇
力学   442篇
综合类   53篇
数学   1127篇
物理学   2741篇
  2024年   11篇
  2023年   165篇
  2022年   197篇
  2021年   230篇
  2020年   301篇
  2019年   295篇
  2018年   247篇
  2017年   258篇
  2016年   418篇
  2015年   400篇
  2014年   529篇
  2013年   588篇
  2012年   749篇
  2011年   770篇
  2010年   501篇
  2009年   452篇
  2008年   509篇
  2007年   402篇
  2006年   406篇
  2005年   372篇
  2004年   322篇
  2003年   237篇
  2002年   213篇
  2001年   182篇
  2000年   118篇
  1999年   182篇
  1998年   118篇
  1997年   89篇
  1996年   107篇
  1995年   111篇
  1994年   91篇
  1993年   57篇
  1992年   56篇
  1991年   57篇
  1990年   67篇
  1989年   45篇
  1988年   29篇
  1987年   22篇
  1986年   28篇
  1985年   14篇
  1984年   14篇
  1983年   14篇
  1982年   8篇
  1981年   10篇
  1979年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1928年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
The direct utilization of metal–organic frameworks (MOFs) for electrocatalytic oxygen evolution reaction (OER) has attracted increasing interests. Herein, we employ the low-dose integrated differential phase contrast-scanning transmission electron microscopy (iDPC-STEM) technique to visualize the atomic structure of multivariate MOFs (MTV-MOFs) for guiding the structural design of bulk MOFs for efficient OER. The iDPC-STEM images revealed that incorporating Fe3+ or 2-aminoterephthalate (ATA) into Ni-BDC (BDC: benzenedicarboxylate) can introduce inhomogeneous lattice strain that weaken the coordination bonds, which can be selectively cleaved via a mild heat treatment to simultaneously generate coordinatively unsaturated metal sites, conductive Ni@C and hierarchical porous structure. Thus, excellent OER activity with current densities of 10 and 100 mA cm−2 are achieved over the defective MOFs at small overpotentials of 286 mV and 365 mV, respectively, which is superior to the commercial RuO2 catalyst and most of the bulk MOFs.  相似文献   
102.
Developing cost-effective and sustainable acidic water oxidation catalysts requires significant advances in material design and in-depth mechanism understanding for proton exchange membrane water electrolysis. Herein, we developed a single atom regulatory strategy to construct Co−Co dinuclear active sites (DASs) catalysts that atomically dispersed zirconium doped Co9S8/Co3O4 heterostructure. The X-ray absorption fine structure elucidated the incorporation of Zr greatly facilitated the generation of Co−Co DASs layer with stretching of cobalt oxygen bond and S−Co−O heterogeneous grain boundaries interfaces, engineering attractive activity of significantly reduced overpotential of 75 mV at 10 mA cm−2, a breakthrough of 500 mA cm−2 high current density, and water splitting stability of 500 hours in acid, making it one of the best-performing acid-stable OER non-noble metal materials. The optimized catalyst with interatomic Co−Co distance (ca. 2.80 Å) followed oxo-oxo coupling mechanism that involved obvious oxygen bridges on dinuclear Co sites (1,090 cm−1), confirmed by in situ SR-FTIR, XAFS and theoretical simulations. Furthermore, a major breakthrough of 120,000 mA g−1 high mass current density using the first reported noble metal-free cobalt anode catalyst of Co−Co DASs/ZCC in PEM-WE at 2.14 V was recorded.  相似文献   
103.
Transition-metal-catalyzed oxidative C−H amination reactions are among the most attractive topics in organic synthesis to construct nitrogen-containing motifs. The challenge is that most of these reactions employed stoichiometric oxidants to achieve satisfied catalytic efficiencies. Herein, we report a Pd(II)/LA-catalyzed (LA: Lewis acid) oxidative C−H amination reaction of 2-acetaminobiphenyls to construct carbazoles by using dioxygen balloon as the sole oxidant source, and the presence of LA sharply improved the catalytic efficiency of Pd(OAc)2. Remarkably, in certain cases, the deacetylation of the annulation product happened under standard conditions to afford free carbazoles as the final product. The H/D exchange studies confirmed the reversibility of C−H activation and also disclosed multiple C−H activation sites by using −NAc and −NTs as the directing groups. In addition, the palladacycle compound was identified through 1H NMR characterizations and proved to be the intermediate prior to the carbazole formation.  相似文献   
104.
A palladium-catalyzed oxidative amidation of conjugated olefin with 2-pyridone is described. A series of E-Enamides were synthesized in a highly stereocontrolled manner. The reaction also accommodates other cyclic and acyclic amides. Z-Enamides were predominantly prepared for primary amides probably due to the presence of an intramolecular hydrogen bond. Gram-scale synthesis of enamide and the following oxidative annulation with diphenylacetylene demonstrates the synthetic utility of this reaction.  相似文献   
105.
The conventional electrolytic water-splitting process for hydrogen production is plagued by high energy consumption, low efficiency, and the requirement of expensive catalysts. Therefore, finding effective, affordable, and stable catalysts to drive this reaction is urgently needed. We report a nanosheet catalyst composed of carbon nanotubes encapsulated with MoC/Mo2C, the Ni@MoC-700 nanosheet showcases low overpotentials of 275 mV for the oxygen evolution reaction and 173 mV for the hydrogen evolution reaction at a current density of 10 mA ⋅ cm−2. Particularly noteworthy is its outstanding performance in a two-electrode system, where a cell potential of merely 1.64 V is sufficient to achieve the desired current density of 10 mA ⋅ cm−2. Furthermore, the catalyst demonstrates exceptional durability, maintaining its activity over a continuous operation of 40 hours with only minimal attenuation in overpotential. These outstanding activity levels and long-term stability unequivocally highlight the promising potential of the Ni@MoC-700 catalyst for large-scale water-splitting applications.  相似文献   
106.
The graphitic carbon nitride (g-C3N4) materials with many intriguing properties have attracted much attention in photocatalysis. The photocatalytic activity of g-C3N4 is hindered by serious aggregation and limited exposed active sites. Herein is shown that nanosized g-C3N4 can be simply obtained by a superfast high-pressure homogenization approach. The high-pressure homogenization treatment can provide strong force to cut and/or to exfoliate the bulk g-C3N4 into nanosized g-C3N4 with good dispersion. Moreover, choosing different solvents during treatment can cause a different surface structure of as-prepared nanosized g-C3N4. In addition, the narrow bandgap properties, the high photogenerated charge carrier separation, and the transport abilities are achieved in as-prepared nanosized g-C3N4 because of the retaining conjugated C3N4 system. Specifically, the photocatalytic activities of as-prepared nanosized g-C3N4 have been significantly enhanced in terms of degradation of organic dye Rhodamine B (RhB) under visible light irradiation (10 times higher than that of bulk g-C3N4). These findings can provide a promising and simple approach to the exfoliation, nanonization, and surface functionalization of 2D layered materials.  相似文献   
107.
Cytochrome P450 OleTSA, a new cytochrome P450 enzyme from Staphylococcus aureus, catalyzes the oxidative decarboxylation and hydroxylation of fatty acids to generate terminal alkenes and fatty alcohols. The mechanism of this bifurcative chemistry remains largely unknown. Herein, a class of derivatized fatty acids were synthesized as probes to investigate the effects of substrate structure on the product type of P450 OleTSA. The results demonstrate that the fine-tuned structure of substrates, even in a remote distance from the carboxyl group, significantly regulates OleT catalyzed decarboxylation/hydroxylation reactions. Molecular docking analysis indicated the potential interactions between the carboxylate groups of different probes and the enzyme active center which was attributed to the bifurcative chemistry.  相似文献   
108.
Size-controlled flow synthesis of nanoporous particles are of considerable interest for future industrial applications,however,is facing challenges due to lack of in-situ method for size-characterization in fluidic environment.We present that ultraviolet-visible(UV-vis) absorption spectroscopy can be integrated into a flow-synthesis system which was produced by femtosecond laser micro machining.The shift of the absorption peak position of the ex-situ and in-situ UV-vis spectra correlates to variation of size of porous metal-organic frameworks crystals.ZIF-67 crystals with a size in the range from 200 nm to1025 nm are fabricated with the assistance of tri-ethylamine under monitoring of in-situ UV-vis spectra.The ZIF-67 crystals are converted into nanoporous carbons particles with controlled sizes.These materials show size-dependent performance in Na-ion battery and size-independent performance in metal/H_2 O seawater battery.  相似文献   
109.
The different oxidation states of sulphur atom play a significant role on functional materials. In this work, a aryl-thioether and its sulphone substituted benzo[c][1,2,5]oxadiazole dyes were synthesized and utilized to determine thiol-containing amino acids. The result of selectivity experiments showed they detected the cysteine and homocysteine under physiological condition with negligible interference from other amino acids. In comparison to the thioether dye, the sulphone-based dye exhibited much faster response time for Cys and Hcy. However, the sulphone restricted its thiol-reactivity and bioimaging performance in living cells. By reducing the oxidation state of sulphur atom, we amazedly found that the sulfoxide-based dye still maintained high selectivity ultrafast response time for Cys/Hcy under physiological condition. It was worth mentioning that it also had high reactivity and good bioimaging performance that sulfone compounds did not have.  相似文献   
110.
Fe-based compounds with good environmental friendliness and high reversible capacity have attracted considerable attention as anode for lithium-ion batteries.But,similar to other transition metal oxides(TMOs),it is also affected by large volume changes and inferior kinetics during redox reactions,resulting in the destruction of the crystal structure and poor electrochemical performance.Here,Fe_3O_4/C nanospheres anchored on the two-dimensional graphene oxide as precursors are phosphated and sintered to build the multiphasic nanocomposite.XRD results confirmed the multiphasic nanocomposite composed of Fe_2O_3,Fe_3O_4 and Fe_3PO_7,which will facilitate the Li~+ diffusion.And the carbonaceous matrix will buffer the volume changes and enhance electron conduction.Consequently,the multiphasic Febased anode delivers a large specific capacity of 1086 mAh/g with a high initial Coulombic efficiency of 87% at 0.1 C.It also has excellent cycling stability and rate property,maintaining a capacity retention of~87% after 300 cycles and a high reversible capacity of 632 mAh/g at 10 C.The proposed multiphasic structure offers a new insight into improving the electrochemical properties of TMO-based anodes for advanced alkali-ion batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号